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Figure 1. ToonifyGB: We propose an efficient two-stage framework that employs an improved StyleGAN to generate stylized head videos
from input video frames and synthesize the corresponding 3D avatars using Gaussian blendshapes. Our method supports real-time synthesis
of stylized avatar animations (with 50k Gaussians for the neutral model and 14k Gaussians for the mouth interior) in diverse styles such as

Arcane and Pixar.

Abstract

The introduction of 3D Gaussian blendshapes has enabled
the real-time reconstruction of animatable head avatars
from monocular video. Toonify, a StyleGAN-based method,
has become widely used for facial image stylization. To
extend Toonify for synthesizing diverse stylized 3D head
avatars using Gaussian blendshapes, we propose an effi-
cient two-stage framework, ToonifyGB. In Stage 1 (stylized
video generation), we adopt an improved StyleGAN to gen-
erate the stylized video from the input video frames, which
overcomes the limitation of cropping aligned faces at a fixed
resolution as preprocessing for normal StyleGAN. This pro-
cess provides a more stable stylized video, which enables
Gaussian blendshapes to better capture the high-frequency
details of the video frames, facilitating the synthesis of high-
quality animations in the next stage. In Stage 2 (Gaus-
sian blendshapes synthesis), our method learns a stylized

neutral head model and a set of expression blendshapes
from the generated stylized video. By combining the neutral
head model with expression blendshapes, ToonifyGB can ef-
ficiently render stylized avatars with arbitrary expressions.
We validate the effectiveness of ToonifyGB on benchmark
datasets using two representative styles: Arcane and Pixar.

1. Introduction

With the advancement of 3D head reconstruction tech-
nologies, individuals can now personalize unique avatars
for telepresence and virtual/augmented reality applications,
which serve as a crucial foundation for the rise of the meta-
verse. Considering user preferences and privacy concerns,
the creation of stylized avatars has become an important
research topic. Toonify [36], a StyleGAN-based method,
was designed for 2D facial image stylization, presenting
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the potential of translating real portraits into stylized 2D
images. While such methods focus on 2D images, re-
cent advances in 3D head reconstruction have mainly tar-
geted photo-realistic avatars. In contrast, stylized 3D head
avatars emphasize personal identity and the faithful transfer
of artistic styles.

Blendshapes are an efficient facial animation represen-
tation that synthesize continuous and high-quality expres-
sions by blending a set of 3D meshes, each correspond-
ing to a specific facial expression. These facial shapes
are synthesized by linearly blending the basis meshes us-
ing weighting coefficients. With the introduction of Neural
Radiance Fields (NeRF) [31], Gao ef al. [11] and Zheng
et al. [57] incorporated the blendshape concept into NeRF,
enabling avatar animation through a group of NeRF blend-
shapes that are linearly blended. Furthermore, the re-
cently proposed 3D Gaussian Splatting (3DGS) [22] signif-
icantly improved rendering efficiency and achieved higher-
quality head reconstruction, outperforming NeRF in both
speed and quality. Building on this, 3D Gaussian Blend-
shapes (3DGB) [29] successfully integrated blendshapes
with Gaussian splatting, achieving real-time rendering and
state-of-the-art performance in head reconstruction.

In contrast to previous works focused on photo-realistic
3D head avatar reconstruction, we propose ToonifyGB, a
two-stage framework for synthesizing and animating 3D
stylized head avatars. Given monocular video frames,
Stage 1 adopts an improved StyleGAN to generate a more
stable and less jittery stylized video, without requiring fixed
resolution or pre-aligned face cropping. In Stage 2, we build
upon 3DGB to learn a neutral head model and a set of ex-
pression blendshapes, each represented as 3D Gaussians.
Finally, by incorporating a facial tracker [59], ToonifyGB
uses the tracked motion parameters to animate 3D stylized
head avatars.

The contributions of this work are as follows:

* We propose ToonifyGB, an efficient two-stage framework
that synthesizes 3D stylized head avatars from monocular
videos using Gaussian blendshapes, supporting diverse
styles with real-time animation.

* We demonstrate that reducing per-frame jitter in the gen-
erated video enables Gaussian blendshapes to better cap-
ture high-frequency details, thereby improving the quality
of 3D stylized head avatar animations.

* To the best of our knowledge, this work is the first to syn-
thesize 3D stylized head avatars using Gaussian blend-
shapes.

2. Related Work

2.1. StyleGAN and Toonify

StyleGAN [18, 19] has been widely used to generate realis-
tic facial images across diverse styles. Inversion of Style-

GAN enables projecting real facial images into its latent
space, allowing subsequent edits such as adding glasses or
changing hairstyles or age [1, 35]. To enhance inversion ef-
ficiency, methods such as pSp [38] and ede [40] employ
encoders to directly project target faces into their corre-
sponding latent codes. However, these methods often strug-
gle to reconstruct fine image details, resulting in unsatis-
factory reconstruction quality. To address these limitations,
ReStyle [4] and HFGI [42] improve reconstruction fidelity
by respectively predicting latent code residuals and correct-
ing intermediate features. Nevertheless, these methods re-
main limited to aligned and cropped facial images for effec-
tive editing and reconstruction.

Recently, researchers [10, 15, 33, 36, 49] have explored
the use of StyleGAN for target-domain image generation
through transfer learning. Among these works, Toonify [36]
fine-tunes the trained generator to blend realistic textures
with toonified facial structures. In addition to image edit-
ing, StyleGAN has also been widely applied to video edit-
ing. Related studies have focused on enhancing video
editing performance by employing temporal correlations
in low-dimensional latent codes [9], disentangling iden-
tity from facial attributes [52], incorporating sketch-based
branches [28], and tuning the generator to maintain tempo-
ral consistency [41]. However, these methods typically rely
on face alignment and cropping as preprocessing. Although
StyleGAN3 [20] was introduced to support unaligned face
inputs, a subsequent study [5] has shown that it struggles
to encode facial features effectively without preprocess-
ing, often resulting in structural artifacts. To overcome
these limitations, methods such as VToonify [50] and Style-
GANEX [51] have been proposed to directly process videos
beyond pre-aligned cropping. Nevertheless, these methods
remain limited to 2D representations and have yet to be ex-
tended to 3D applications.

2.2. 3D Head Avatar

Since the introduction of NeRF [31], implicit
representation-based methods [7, 13, 47, 53, 57] for
head reconstruction have achieved remarkable progress.
3DGS [22] has obtained a significant breakthrough in 3D
reconstruction, further advancing the development of down-
stream applications such as 3D head modeling. Although
several Gaussian-based methods [3, 8, 24, 29, 37, 45, 48]
have demonstrated high-quality head reconstruction and
impressive rendering performance, they typically focus on
photo-realistic avatars, with relatively limited exploration
of avatar stylization. Stylized head avatars, characterized
by geometric abstraction and artistic expression, differ
significantly from the photo-realistic avatars synthesized
by the aforementioned methods.

Pre-trained 3D GANSs [44] enable high-quality genera-
tion, making 3D head stylization possible. Although fine-



Figure 2. Pipeline: Our ToonifyGB framework consists of two stages: Stage 1 involves the generation of stylized videos, and Stage 2
focuses on the synthesis of 3D stylized head avatars using Gaussian blendshapes.

tuning 3D generators for geometric and texture-based styl-
ization has proven effective [2, 17, 25, 34, 43, 54], per-
forming independent fine-tuning for each new style re-
mains costly. Toonify3D [16] addressed this limitation
by predicting facial surface normals using the proposed
StyleNormal, enabling direct face stylization without ad-
ditional fine-tuning. Similarly, DeformToon3D [55] in-
troduced StyleField to predict conditional 3D deforma-
tions, aligning NeRF representations in real space with style
space to achieve geometric stylization and obviate per-style
fine-tuning. However, Toonify3D suffers from limited data
diversity, and DeformToon3D cannot support novel-view
animations, which limits their application scenarios.

3. Method
3.1. ToonifyGB Framework

Given a monocular video input, ToonifyGB applies frame-
by-frame stylization to generate the corresponding stylized
frames. For inputs such as live streams or selfie videos,
the face often occupies only a small portion of each frame,
while the rest includes the hairstyle and upper body. Tra-
ditional methods [18, 19] typically require face alignment,
cropping, and editing before synthesizing the results back
into the original frame. This process often introduces vi-
sual discontinuities at the seams, resulting in noticeable jit-
ter in the output video. To address this issue, we adopt
an improved StyleGAN model based on StyleGANEX [51]
in Stage 1, enabling stable stylized video generation at the

original resolution, as shown in Figure 2.

To prepare the training data for Stage 2, we follow the
method in [29, 60], using the facial tracker from [59] to
compute FLAME [26] meshes, including a neutral head
model and a set of expression blendshapes. This process
also provides camera parameters C|, joint and pose parame-
ters O, and expression coefficients {1y } for each frame. In
addition to enabling facial expressions control, the FLAME
model based on Principal Component Analysis (PCA) pro-
vides joint and pose parameters for controlling head, eye-
ball, eyelid, and jaw movements. As shown in Figure 2, we
apply Linear Blend Skinning (LBS) to transform the Gaus-
sian model based on the extracted joint and pose parame-
ters. The transformation is defined as:

BY* = LBS(BY,0). (1)

The transformed Gaussian model is then rendered in real-
time as a 3D stylized head avatar using Gaussian Splatting.
Finally, by integrating the camera parameters, we enable
novel-view rendering and animation.

3.2. Stylized Video Generation

As shown in StyleGANEX [51], manipulating feature maps
at different layers of StyleGAN leads to different spatial ef-
fects in the generated faces. Specifically, while shifting or
rotating the feature maps in deeper layers (i.e., Layer 7) pro-
duces consistent global transformations, similar operations
in shallow layers (i.e., Layer 1) fail to preserve facial struc-
ture due to the low spatial resolution of the 4 x 4 feature
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Figure 3. Visualization of stylized video generation results in
“Arcane” and “Pixar” styles on the INSTA [60] and NeRFBlend-
Shape [11] datasets, covering both male and female subjects.

map, causing blurring and loss of detail. To address this
limitation, we adopt StyleGANEX [51], an enhanced vari-
ant of StyleGAN2 [18], which increases the spatial resolu-
tion of shallow feature maps (Layers 1-7) to 32 x 32. This
improvement enables finer control over facial geometry and
enhances the generation quality for unaligned faces.

Our specific architectural improvements of the generator
are as follows. First, we replace the constant 4 x 4 input
of the first layer with a variable feature map of resolution
1/32 of the final output, enabling support for arbitrary in-
put sizes. Then, we replace the standard convolutions in the
shallow layers with dilated convolutions to enlarge the re-
ceptive field. Finally, we remove all upsample operations
before the eighth layer, ensuring that the seven shallow lay-
ers maintain the same 32 x 32 resolution.

These architectural improvements effectively address the
limitations beyond pre-aligned cropping. As shown in Fig-
ure 3, our method consistently generates high-quality styl-
ized head videos across diverse styles, regardless of gender.

3.3. Gaussian Blendshapes Synthesis

We represent all Gaussian head avatars using 3D Gaussians.
As described in 3DGS [22], each Gaussian has some ba-
sic properties including Gaussian center p, scale s, color c,
opacity «, and rotation ¢q. Based on 3DGB [29], our Gaus-
sian blendshape representation consists of a neutral model
By and a set of n expression blendshapes B1, Bs, ..., B,.
Each Gaussian in the neutral model By has a set of blend
weights w to control joint and pose. In addition, each
Gaussian in an expression blendshape Bj corresponds
one-to-one to a Gaussian in the neutral model By. The dif-

ference between Bj, and B is defined as the difference in
their corresponding Gaussian properties: ABy = By — By.
The expression of Gaussian head avatar B¥ can be com-
puted as follows:

BY =By + Y i ABy )
k=1

where 15 denotes the expression coefficients. Here, BY
represents the untransformed expression model, and the fi-
nal posed Gaussian model, obtained via Linear Blend Skin-
ning (LBS), is defined in Equation 1.

Since the FLAME meshes and blendshape models do
not include interior mouth components such as teeth, we
adopt the method of 3DGB [29] by defining a separate set of
Gaussians for the mouth B,,,. The properties of these mouth
Gaussians are not affected by expression changes, they only
move with the jaw joint in the FLAME model. The mouth
Gaussians for the head avatar, B}, are computed via linear
blend skinning (LBS) as:

B, = LBS(B,,,0). 3)

The transformed Gaussian model (BY*, BY,) is rendered
into a complete 3D head avatar using real-time Gaussian
Splatting, with the overall pipeline shown in Figure 2.

3.4. Loss Function

We adopt the loss function from 3DGB [29], and define the
total loss as follows:

L= )\lLrgb + XoLo + )\SLrega (4)

where the default weights of A1, Ay and A3 are set to 1, 10,
100, respectively.

The RGB loss L4 encourages the rendered image to
resemble the target video frame in both color and structure.
It is computed as a weighted combination of an L loss and
a differentiable Structural Similarity (D-SSIM) loss:

Lrgb = )\rgbLl + (]- - Argb)LDf.SSIMv )

where the default weight )\, is set to 0.2.

The opacity loss L,, penalizes opacity values outside the
head mask. For each frame i, we compute the accumulated
opacity image I? and the corresponding head mask M}, and
average the error over F' frames:

F
Lo = ;; ﬁ ST (L) - Mip)®. (©)

peP

The regularization loss L,..4 constrains the mouth Gaus-
sians to remain within a predefined cylindrical volume V.
Let {x;} Y, denote the centers of Gaussians located in the



Figure 4. Visualization of stylized video generation results: We present details of the real head from the input video, and the “Arcane”
stylized head generated by our method. From left to right, the results for the video samples “bala” and “wojtek_1"" are shown.

Table 1. Video durations and inference times: Duration (in sec-
onds) of the input videos, and inference time (in seconds) of our
method.

Table 2. Quantitative comparison of video stabilization: We
compare the original input (OI), the aligned input (AI), our “Ar-
cane” (OA), and the aligned “Arcane” (AA) videos.

Video samples | justin malte_l nf 0l bala wojtek_-1 person_0004 Video Samples | justin  malte_1  nf 0l bala  wojtek_1  person_0004
Duration 98 130 130 159 137 60 Ol | 3778 3847 3182 3773  39.02 37.17
Inference 221 260 213 342 275 108 ITF? Al 32.45 28.84 26.49 27.97 29.09 34.80

OA | 3580 3451 2936 3601  36.77 3382

AA | 3135 2604 2531 2643 2831 30.84

O | 09685 09709 09361 09614 09651 0.9277

mouth region. To penalize points outside the volume, we ISH Al | 09066 0.9276 0.8918 0.8995  0.9126 0.9270
. . . OA | 09700 09643 09382 09685 0.9670 0.9532

employ a signed distance function SDF'(x;, V'), and define AA | 09034 08965 08857 08963  0.9030 0.9036

the loss as follows:
N
2
LT@.‘? = N ; (ma’X (SDF(XM V)? O)) ) (7)

where N is the number of mouth Gaussians.

4. Experiments

4.1. Baselines

Due to the current lack of methods for synthesizing 3D
stylized head avatars using Gaussian blendshapes, we
compare our method against the following state-of-the-
art methods for photo-realistic 3D head avatar synthesis:
INSTA [60], PointAvatar [58], FLARE [6], SplattingA-
vatar [39], FlashAvatar [45], and 3DGB [29]. Notably,
3DGB shares a similar architecture with ours but focuses
on photo-realistic avatar synthesis and does not support the
synthesis of diverse stylized avatars.

4.2. Dataset

We evaluate both our method and state-of-the-art photo-
realistic avatar synthesis methods using six videos from the

INSTA [60] dataset. Each video is cropped and resized to
512 x 512 resolution, with sequence lengths ranging from
1,000 to 4,000 frames. Following the method of 3DGB [29],
we retain the final 350 frames of each video for testing.
Both 3DGB [29] and our method apply the same prepro-
cessing pipeline [59, 60], including background removal
and FLAME parameter extraction.

4.3. Evaluation Metrics

We employ two metrics to evaluate video stabilization:
Inter-frame Transformation Fidelity (ITF) [30, 32, 46] and
Inter-frame Similarity Index (ISI) [12, 14]. ITF measures
the inter-frame Peak Signal-to-Noise Ratio (PSNR) in dB
based on the mean squared error. The intuitive idea of ITF
is that a more stable video (i.e., less jittery) will have greater
similarity between adjacent frames compared to an unstable
version of the same video. IST computes the average Struc-
tural Similarity (SSIM) between adjacent frames across the
video. Higher ISI values indicate greater perceptual simi-
larity between frames, leading to improved visual comfort
for viewers.



Table 3. Quantitative comparison of 3D head avatars: We evaluate our method and state-of-the-art methods on the INSTA [60] dataset.
In each metric group, the best value is highlighted in bold, and the second-best is underlined.

Method justin malte_1 nf 01 bala wojtek_1 person_0004
PSNRT SSIM?T | PSNRT SSIMfT | PSNRT SSIM?T | PSNRT  SSIMt | PSNRT  SSIM?T | PSNRT  SSIMtT
INSTA [60] 31.66 09591 | 27.44 009159 | 2645 0.8937 | 29.53 0.8896 | 31.36 0.9452 | 2544  0.8478
PointAvatar [58] 3040 09373 | 2498 0.8853 | 2525 0.8919 | 27.88 0.8658 | 28.82 09192 | 2329 0.8576
FLARE [6] 29.10 09363 | 2593 0.8973 | 2597 09027 | 27.20 0.8761 | 27.84 09216 | 2553 0.9015
SplattingAvatar [39] | 30.93 09482 | 27.66 0.9243 | 27.08 0.9202 | 32.14 0.9272 | 29.54 09400 | 2649 0.9075
FlashAvatar [45] 32.16 09611 | 2745 09326 | 28.02 09326 | 30.27 0.8494 | 32.02 0.9509 | 2549 0.8996
3DGB [29] 3263  0.9643 | 28.65 09432 | 28.06 0.9340 | 33.29 0.9457 | 32.57 0.9623 | 23.66 0.8449
Ours (Arcane) 33.12 09628 | 29.55 0.9360 | 28.33 0.9288 | 33.39 0.9488 | 30.56 09436 | 28.76 0.9110
Ours (Pixar) 3342 09662 | 27.01 09375 | 2834 0.9341 | 30.84 0.9337 | 31.14 0.9583 | 23.16  0.8338

Table 4. Performance comparison: We record the training time
(in minutes) and the rendering speed (in fps) of 3DGB and our
method in both “Arcane” (A) and “Pixar” (P) styles.

Video Samples justin - malte_1 nf Ol bala wojtek_-1 person_0004
3DGB 41 44 44 4 49 45
Train| | Ours (A) 40 45 44 45 50 44
Ours (P) 43 40 43 44 45 44
3DGB 143 142 130 134 138 134
Render? | Ours (A) | 140 142 131 135 140 128
Ours (P) | 141 133 128 132 134 127

For 3D head avatar synthesis, we evaluate the per-
formance of our method and state-of-the-art methods for
photo-realistic avatar synthesis using standard evaluation
metrics [29, 56], including Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM). In addi-
tion, we record the training time (in minutes) and the ren-
dering speed (in frames per second, fps) for each method.
In the ablation study, we additionally adopt the Learned
Perceptual Image Patch Similarity (LPIPS) metric to bet-
ter capture perceptual differences between the synthesized
avatars and the ground truth.

4.4. Implementation Details

To ensure a fair performance comparison, the training and
testing of all methods are performed on a single RTX 4090
GPU. Our methods are implemented in Python using the
PyTorch framework.

For 2D stylized video generation, we use the pre-trained
models provided by StyleGANEX [51]. For training the 3D
stylized head avatars, we employ the Adam optimizer [23],
setting the initial learning rates of the Gaussian properties
{Xp, ok, Sk, i, S, J103.2x 1077, 5x107°,5x 1074, 1%
10~*, and 1.25 x 1073, respectively. Following 3DGB [29],
the initial number of sampled Gaussians is 50k for the neu-
tral head model and 14k for the mouth interior.

4.5. Quantitative Comparison

4.5.1. Video Stabilization

We adopt an improved StyleGAN model to generate six
videos in the “Arcane” style. The durations of the videos

Figure 5. Qualitative comparison of each stage: We present the
input video head frames, the corresponding stylized videos, and
3D head avatars synthesized by our method.

and their corresponding inference times are summarized in
Table 1. All input videos have a resolution of 512 x 512 pix-
els, and inference is performed on a single NVIDIA RTX
4090 GPU. For video durations ranging from 60 to 160 sec-
onds, the generation times span approximately 100 to 350
seconds.

To evaluate the impact of preprocessing, we apply a stan-
dard face alignment technique based on a facial keypoint
predictor [21] to the input videos. We compare the orig-
inal input videos (Original Input, OI) with their aligned
counterparts (Aligned Input, AI). Likewise, we compare
the “Arcane” style outputs generated from unaligned inputs
(Ours Arcane, OA) with those generated from aligned in-
puts (Aligned Arcane, AA).

As shown in Table 2, both the Inter-frame Transforma-
tion Fidelity (ITF) and Inter-frame Similarity Index (ISI)
scores for Al are consistently lower than those for OI. Sim-
ilarly, AA exhibits lower ITF and ISI scores compared to
OA. These results suggest that applying face alignment and
cropping prior to frame-by-frame generation (i.e., Al and
AA) tends to introduce greater temporal instability, result-
ing in more jittery outputs.



Table 5. User preference study: We conduct user preference studies on the “Arcane” and “Pixar” styles, where users rate their preferences
on a scale from 1 to 5, with higher scores indicating greater satisfaction, across three evaluation criteria: Style Consistency, Identity
Preservation, and Overall Quality. The highest percentage is highlighted in bold.

Style Arcane Pixar

Evaluation Criteria | Style Consistency Identity Preservation Overall Quality | Style Consistency Identity Preservation Overall Quality
1: Very Dissatisfied 0.0% 2.8% 0.6% 2.8% 5.6% 2.2%

2: Dissatisfied 5.0% 10.0% 6.1% 5.0% 6.7% 5.0%

3: Neutral 11.1% 15.6% 15.0% 13.3% 24.4% 20.0%

4: Satisfied 32.2% 39.4% 36.7% 29.4% 36.7% 37.8%

5: Very Satisfied 51.7% 32.2% 41.7% 49.4% 26.7% 35.0%

Ours: Pixar

Ours: Arcane

Figure 6. Qualitative comparison of baseline and ours: We
present 3D head avatars using Gaussian blendshapes synthesized
by 3DGB [29] and our method.

4.5.2. 3D Head Avatar

We evaluate our method and state-of-the-art methods using
standard metrics for animatable head reconstruction. The
quantitative results are presented in Table 3, and the train-
ing and rendering times for both the baseline methods and
ours are reported in Table 4. With the additional integration
of stylization, our method achieves performance compara-
ble to the state-of-the-art on the PSNR and SSIM metrics
in most cases, and even outperforms them on certain data.
Specifically, our method outperforms all other methods on
synthesizing the “Arcane” style for the “bala” and “per-
son_0004” data, as well as the “Pixar” style for the “justin”
and “nf_01” data.

In addition, although our method integrates stylization
into 3D head avatars, its training and rendering times remain
comparable to those of the method of 3DGB [29]. In certain
cases, our method is even more efficient in both training and
rendering. Combined with the additional time required for
video generation (as shown in Table 1), the overall time cost
of our method remains acceptable.

4.6. Qualitative Comparison

We present the original video head frames, the correspond-
ing stylized video frames generated by our method, and the
3D stylized head avatars synthesized using Gaussian blend-
shapes. The qualitative comparison is shown in Figure 5.
The examples are selected from the “bala” dataset in the
“Pixar” style and the “wojtek_1" dataset in the “Arcane”
style.

In the stylized video, the “bala” data exhibits artifacts
along the side edge of the head. We attribute this to the la-
tent space distribution learned by StyleGAN, which tends to
produce striped artifacts when the viewing angle falls out-
side the distribution covered by the training data. Notably,
these artifacts are not present in the corresponding 3D styl-
ized head avatars rendered by our method. Furthermore, the
3D stylized head avatars successfully preserve fine details
from the stylized videos, such as the mole near the eye in
the “wojtek_1" dataset. However, since the 3D avatar syn-
thesis mainly focuses on the facial region, the neck area is
typically blurred, as observed in both cases. This blurring
leads to the lower quantitative performance, since the neck
region is included in the evaluation.

The qualitative comparison with 3DGB [29] is presented
in Figures 6. Our method effectively captures and preserves
high-frequency details in the stylized videos. Compared to
the state-of-the-art method, ToonifyGB can synthesize 3D
stylized head avatars with comparable quality and detail.

4.7. Visualization

To better demonstrate the visual quality of our generated
videos, we present several examples in Figure 3, and se-
lect two representative videos for detailed comparison in
Figure 4. Specifically, we show real head frames from the
“bala” and “wojtek_1" videos, as well as the corresponding
heads of generated videos in the “Arcane” style.

The results demonstrate that key facial features, such as
the beard, mouth shape, and even small details like the black
mole above the eye in the lower right image, are well pre-
served after the stylization process. These details highlight
the excellent performance of our method in terms of detail
preservation and identity consistency.



Table 6. Ablation study on face alignment and cropping: We
compare 3D head avatars synthesized from different input videos:
one generated by our method, and the other using face alignment
and cropping as prprocessing.

Method PSNR?T SSIM?T LPIPS]
Face Align & Crop | 32.23  0.9387 0.1587
Ours 33.27 09645 0.0796
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Stylized Video-Driven

Figure 7. Ablation study on the effect of different driving
videos: We present 3D stylized head avatar animation driven by
the original input videos and our generated videos.

4.8. User Study

To more effectively evaluate the 3D stylized head avatars
synthesized by our method, we conduct a user preference
study. We collect 180 votes for both the “Arcane” and
“Pixar” styles, respectively, with users rating their prefer-
ences using Likert scales [27] across three evaluation cri-
teria: Style Consistency, Identity Preservation, and Overall
Quality. Each criterion is assessed using a five-point scale:
1 for Very Dissatisfied, 2 for Dissatisfied, 3 for Neutral, 4
for Satisfied, and 5 for Very Satisfied.

Specifically, Style Consistency evaluates how well the
stylized output aligns with the defining characteristics of the
style; Identity Preservation measures whether the avatar re-
tains the unique features and identity of the original charac-
ter after stylization; and Overall Quality provides a compre-
hensive assessment of the visual appeal and overall quality
of the synthesized avatar.

The results are presented in Table 5, indicating that most
users show great satisfaction with the “Arcane” style, par-
ticularly in terms of Style Consistency (51.7% of users are
very satisfied) and Overall Quality (41.7% of users are very
satisfied). Although the rating for Identity Preservation is
slightly lower, the average score remains favorable.

In addition, the “Pixar” style is also favored by users,
particularly in Style Consistency (49.4% of users are very

Ours: Pixar

Ours: Arcane

Figure 8. Limitation: We present side-view renderings synthe-
sized by 3DGB [29] and our method.

satisfied). For Identity Preservation and Overall Quality, the
majority of users (over 60%) indicate satisfaction with our
3D stylized head avatars.

4.9. Ablation Study
4.9.1. Face Alignment and Cropping

We compare 3D stylized head avatars (using the “justin”
data) synthesized from videos processed by our method
against those generated from videos preprocessed with face
alignment and cropping. The resulting avatars are evaluated
using PSNR, SSIM, and Learned Perceptual Image Patch
Similarity (LPIPS). As shown in Table 6, our method out-
performs the traditional method with face alignment and
cropping across all evaluation metrics. This demonstrates
that our method effectively eliminates jitter during video
generation, enabling higher-quality synthesis of 3D stylized
head animations.

4.9.2. Source Videos for Driving Animation

Compared with the architecture of 3DGB [29] that synthe-
sizes 3D photo-realistic head avatars, our framework in-
cludes an additional Stage 1 to generate the stylized video.
To demonstrate the importance of the generated stylized
video in driving the animation, we compare the results of
using the original input video (real face) versus our gener-
ated stylized video as the driving source, as shown in Fig-
ure 7.

It can be observed that using the original input video
(real face) as the driving source often leads to unsatisfac-
tory results, especially around the mouth region. This error
occurs due to significant differences in expression blend-
shapes between the real and stylized domains. These results
highlight the importance of the stylized videos generated by
Stage 1 of our framework. Therefore, we recommend using
the generated stylized videos, rather than the original input
videos, as the driving source for 3D stylized head avatar an-
imation.



5. Limitation

Our method struggles to render side views of 3D stylized
head avatars when the training data (i.e., input video) lacks
side-view representations of the real head. As shown in
Figure 8, we present side-view renderings synthesized by
both 3DGB [29] and our method, and this limitation is also
observed in the state-of-the-art methods. In fact, existing
NeRF-based and Gaussian-based methods have yet to ef-
fectively address this issue. Rendering novel views from
single-view training data remains an open problem for fu-
ture research. Two directions to address this limitation in-
clude employing 2D GANSs to synthesize videos with side
views as additional training data, and enhancing the gener-
alization ability of our model.

6. Conclusion

We propose a novel two-stage framework, named Tooni-
fyGB, which utilizes Gaussian blendshapes to synthesize
head animations in diverse styles from monocular videos.
In Stage 1, the proposed method adopts an improved
StyleGAN-based model to generate stylized videos with-
out requiring face alignment or cropping as preprocess-
ing. This results in more temporally stable outputs, pro-
viding a reliable foundation for high-quality 3D head avatar
animation synthesis. Stage 2 focuses on constructing 3D
stylized head avatars using Gaussian blendshapes, enabling
fine-grained expression modeling and satisfactory anima-
tion. Our method supports real-time generation of stylized
avatar animations in popular styles such as “Arcane” and
“Pixar”.

For future work, we plan to integrate motion capture
technologies to enable real-time expression control of 3D
stylized avatars. Specifically, we aim to explore more effi-
cient approaches for obtaining real-time expression parame-
ters, bypassing the complexity of traditional PCA inversion.
This direction is expected to further broaden the applicabil-
ity of ToonifyGB in virtual character interaction and per-
sonalized avatar generation.
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Figure 9. Visualization of stylized video generation results on the videos from the INSTA [60] and NeRFBlendShape [11] datasets.

Figure 10. Visualization of the synthesized 3D stylized head avatars. Each avatar closely resembles its corresponding FLAME mesh while
capturing the stylized appearance.
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Figure 11. More examples for qualitative comparison: We present input video head frames, and 3D head avatars using Gaussian
blendshapes synthesized by 3DGB [29] and our method.
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